A highly efficient triboelectric negative air ion generator (2024)

References

  1. Krueger, A. P. & Reed, E. J. Biological impact of small air ions. Science 193, 1209–1213 (1976).

    Article CAS Google Scholar

  2. Jiang, S. Y., Ma, A. & Ramachandran, S. Negative air ions and their effects on human health and air quality improvement. Int. J. Mol. Sci. 19, 2966 (2018).

    Article Google Scholar

  3. Ryushi, T. et al. The effect of exposure to negative air ions on the recovery of physiological responses after moderate endurance exercise. Int. J. Biometeorol. 41, 132–136 (1998).

    Article CAS Google Scholar

  4. Sawant, V. S., Meena, G. S. & Jadhav, D. B. Effect of negative air ions on fog and smoke. Aerosol Air Qual. Res. 12, 1007–1015 (2012).

    Article Google Scholar

  5. Livanova, L. M., Levshina, I. P., Nozdracheva, L. V., Elbakidze, M. G. & Airapetyants, M. G. The protective effects of negative air ions in acute stress in rats with different typological behavioral characteristics. Neurosci. Behav. Physiol. 29, 393–395 (1999).

    Article CAS Google Scholar

  6. Wu, C. C. & Lee, G. W. M. Oxidation of volatile organic compounds by negative air ions. Atmos. Environ. 38, 6287–6295 (2004).

    Article CAS Google Scholar

  7. Lin, H. F. & Lin, J. M. Generation and determination of negative air ions. J. Anal. Test. 1, 6 (2017).

    Article Google Scholar

  8. Richardson, G., Eick, S. A., Harwood, D. J., Rosen, K. G. & Dobbs, F. Negative air ionisation and the production of hydrogen peroxide. Atmos. Environ. 37, 3701–3706 (2003).

    Article CAS Google Scholar

  9. Peterson, M. S., Zhang, W., Fisher, T. S. & Garimella, S. V. Low-voltage ionization of air with carbon-based materials. Plasma Sources Sci. Technol. 14, 654–660 (2005).

    Article CAS Google Scholar

  10. Chen, C. H., Huang, B. R., Lin, T. S., Chen, I. C. & Hsu, C. L. A new negative ion generator using ZnO nanowire array. J. Electrochem. Soc. 153, G894–G896 (2006).

    Article CAS Google Scholar

  11. Nakamura, T. & Kubo, T. Tourmaline group crystals reaction with water. Ferroelectrics 137, 13–31 (1992).

    Article CAS Google Scholar

  12. Yeh, J. T. et al. Negative air ion releasing properties of tourmaline/bamboo charcoal compounds containing ethylene propylene diene terpolymer/polypropylene composites. J. Appl. Polym. Sci. 113, 1097–1110 (2009).

    Article CAS Google Scholar

  13. Fan, F. R., Tian, Z. Q. & Wang, Z. L. Flexible triboelectric generator! Nano Energy 1, 328–334 (2012).

    Article CAS Google Scholar

  14. Wu, C. S., Wang, A. C., Ding, W. B., Guo, H. Y. & Wang, Z. L. Triboelectric nanogenerator: a foundation of the energy for the new era. Adv. Energy Mater. 9, 1802906 (2019).

    Article Google Scholar

  15. Guo, H. Y. et al. A highly sensitive, self-powered triboelectric auditory sensor for social robotics and hearing aids. Sci. Robot. 3, eaat2516 (2018).

    Article Google Scholar

  16. Liu, W. L. et al. Integrated charge excitation triboelectric nanogenerator. Nat. Commun. 10, 1426 (2019).

    Article Google Scholar

  17. Liu, Y. et al. Quantifying contact status and the air-breakdown model of charge-excitation triboelectric nanogenerators to maximize charge density. Nat. Commun. 11, 1599 (2020).

    Article CAS Google Scholar

  18. Hinchet, R. et al. Transcutaneous ultrasound energy harvesting using capacitive triboelectric technology. Science 365, 491–494 (2019).

    Article CAS Google Scholar

  19. Xu, W. H. et al. A droplet-based electricity generator with high instantaneous power density. Nature 578, 392–396 (2020).

    Article CAS Google Scholar

  20. Chen, L. et al. Controlling surface charge generated by contact electrification: strategies and applications. Adv. Mater. 30, 1802405 (2018).

    Article Google Scholar

  21. Shi, Q., He, T. & Lee, C. More than energy harvesting – combining triboelectric nanogenerator and flexible electronics technology for enabling novel micro-/nano-systems. Nano Energy 57, 851–871 (2019).

    Article CAS Google Scholar

  22. Liu, S., Wang, H., He, T., Dong, S. & Lee, C. Switchable textile-triboelectric nanogenerators (S-TENGs) for continuous profile sensing application without environmental interferences. Nano Energy 69, 104462 (2020).

    Article CAS Google Scholar

  23. Leung, S. et al. A self‐powered and flexible organometallic halide perovskite photodetector with very high detectivity. Adv. Mater. 30, 1704611 (2018).

    Article Google Scholar

  24. Zi, Y. L. et al. Harvesting low-frequency (<5 Hz) irregular mechanical energy: a possible killer application of triboelectric nanogenerator. ACS Nano 10, 4797–4805 (2016).

    Article CAS Google Scholar

  25. Li, A. Y., Zi, Y. L., Guo, H. Y., Wang, Z. L. & Fernandez, F. M. Triboelectric nanogenerators for sensitive nano-coulomb molecular mass spectrometry. Nat. Nanotechnol. 12, 481–487 (2017).

    Article CAS Google Scholar

  26. Li, C. J. et al. Self-powered electrospinning system driven by a triboelectric nanogenerator. ACS Nano 11, 10439–10445 (2017).

    Article CAS Google Scholar

  27. Zi, Y. L. et al. Field emission of electrons powered by a triboelectric nanogenerator. Adv. Funct. Mater. 28, 1800610 (2018).

    Article Google Scholar

  28. Cheng, J. et al. Triboelectric microplasma powered by mechanical stimuli. Nat. Commun. 9, 3733 (2018).

    Article Google Scholar

  29. Kim, H. J., Han, B., Woo, C. G. & Kim, Y. J. Ozone emission and electrical characteristics of ionizers with different electrode materials, numbers, and diameters. IEEE Trans. Ind. Appl. 53, 459–465 (2017).

    Article CAS Google Scholar

  30. Kim, H. J., Han, B., Kim, Y. J., Oda, T. & Won, H. Submicrometer particle removal indoors by a novel electrostatic precipitator with high clean air delivery rate, low ozone emissions, and carbon fiber ionizer. Indoor Air 23, 369–378 (2013).

    Article CAS Google Scholar

  31. Tyndall, A. M., Starr, L. H. & Powell, C. F. The mobility of ions in air. Part IV.—Investigations by two new methods. Proc. R. Soc. Lond. A 121, 172–184 (1928).

    Article CAS Google Scholar

  32. Skalny, J. D. et al. Mass spectrometric study of negative ions extracted from point to plane negative corona discharge in ambient air at atmospheric pressure. Int. J. Mass Spectrom. 272, 12–21 (2008).

    Article CAS Google Scholar

  33. Wu, C. C., Lee, G. W. M., Yang, S., Yu, K. P. & Lou, C. L. Influence of air humidity and the distance from the source on negative air ion concentration in indoor air. Sci. Total Environ. 370, 245–253 (2006).

    Article CAS Google Scholar

  34. Lin, L., Li, Y., Khan, M., Sun, J. S. & Lin, J. M. Real-time characterization of negative air ion-induced decomposition of indoor organic contaminants by mass spectrometry. Chem. Commun. 54, 10687–10690 (2018).

    Article CAS Google Scholar

  35. Sabo, M., Okuyama, Y., Kucera, M. & Matejcik, S. Transport and stability of negative ions generated by negative corona discharge in air studied using ion mobility-oaTOF spectrometry. Int. J. Mass Spectrom. 334, 19–26 (2013).

    Article CAS Google Scholar

  36. COMSOL Multiphysics v.5.2a (COMSOL, 2016); https://cn.comsol.com/comsol-multiphysics

  37. Zi, Y. L. et al. Standards and figure-of-merits for quantifying the performance of triboelectric nanogenerators. Nat. Commun. 6, 8376 (2015).

    Article CAS Google Scholar

Download references

A highly efficient triboelectric negative air ion generator (2024)
Top Articles
Latest Posts
Recommended Articles
Article information

Author: Jonah Leffler

Last Updated:

Views: 5883

Rating: 4.4 / 5 (65 voted)

Reviews: 88% of readers found this page helpful

Author information

Name: Jonah Leffler

Birthday: 1997-10-27

Address: 8987 Kieth Ports, Luettgenland, CT 54657-9808

Phone: +2611128251586

Job: Mining Supervisor

Hobby: Worldbuilding, Electronics, Amateur radio, Skiing, Cycling, Jogging, Taxidermy

Introduction: My name is Jonah Leffler, I am a determined, faithful, outstanding, inexpensive, cheerful, determined, smiling person who loves writing and wants to share my knowledge and understanding with you.